Please check the examination deta	ils belo	w before entering	your candidate information	
Candidate surname		Oth	Other names	
Pearson Edexcel Level 3 GCE	Cent	re Number	Candidate Number	
Thursday 08 (Oc	tober	2020	
Afternoon (Time: 1 hour 30 minu	tes)	Paper Refere	ence 9FM0/02	
Further Mather	na	tics		
Advanced				
Paper 2: Core Pure Mat	hem	atics 2		
You must have:	<u> </u>		Total Ma	
Mathematical Formulae and Stat	istical	Tables (Green)	, calculator	

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for algebraic manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 7 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Year 2 Further Calculus - hyperbolic differentiation;

solving hyperbolic equations

1. The curve *C* has equation

$$y = 31\sinh x - 2\sinh 2x \qquad x \in \mathbb{R}$$

Determine, in terms of natural logarithms, the exact x coordinates of the stationary points of C.

(7)

remembering from Pure Yr I that to find the stationary points of a curve means finding dy = 0 - but here we are dealing with a Hyperbolic curve C

first differentiating the curve-using
$$\frac{d}{dx}$$
 (sinhkx) = kcoshkx

and making it equal 0

3)coshx-4cosh2x = O , giving us a hyperbolic equation unich we need to solve

METHOD 1: using cosh double angle identity

first dealing with the cosh double angle - know that:

... choosing the latter to match the linear "31 coshx' term in the equation; equation now becomes:

$$31\cosh x - 8\cosh^2 x + 4 = 0$$

notice this is a quadratic in coshx -using substitution: y=coshx

 $\sqrt{-32}$ and sum to give -31:1,-32

2

WAY 1: using definition of inverse cosh taking arcosh of both sides
$$x = \operatorname{arcosh}(4)$$
 using formula booklet definition for inverse $\cosh : \operatorname{arcosh} x = \ln(x + \sqrt{x^2 - 1})$ where $x \to 4$ $x = \ln(4 \pm \sqrt{4^2 - 1})$ =) $x = \ln(4 \pm \sqrt{15})$

 $\cosh x = \frac{1}{2} (e^x + e^{-x})$ $\frac{1}{2}(e^{x}+e^{-x})=4$ *2 ex+e-x=8 *2 e2x+1 = 8ex e2x -8ex+1=0 noticing this is a quadratic in ex: using substitution y=ex y2-84+1=0 4 using calc equation solver or quadratic y=8+1(-812-4(1)(1) $=8\pm\sqrt{64-4}$ $= 8 \pm \sqrt{60} = 8 \pm \sqrt{15 \times 4}$ $= 8 \pm 2\sqrt{15}$ =) y=4±15 subbing in yeex

ex = 4 + 15

taking In of both sides

WAY 2: using exponential definition coshx

Question 1 continued

METHOD 2: using coshx hyperbolic definition

$$31\left(\frac{1}{2}(e^{x}+e^{-x})\right)-4\left(\frac{1}{2}(e^{2x}+e^{-2x})\right)=0$$

$$= \frac{31}{2} (e^{x} + e^{-x}) - 2(e^{2x} + e^{-2x}) = 0$$

expand brackets and evaluate index powers

$$3|e^{x} + 3| - 4e^{2x} - 4| = 0$$

$$xe^{2x} \times e^{2x}$$

taking all terms to RHS
$$4e^{4x} - 31e^{3x} - 31e^{x} + 4 = 0$$

notice this is a quartic in ex-use the substitution y=ex

calc equation solver

only real roots:

subbing ex back in

taking logs of both sides

(Total for Question 1 is 7 marks)

- 2. In an Argand diagram, the points A and B are represented by the complex numbers -3 + 2i and 5 - 4i respectively. The points A and B are the end points of a diameter of a circle C.
 - (a) Find the equation of C, giving your answer in the form

$$|z-a|=b$$
 $a\in\mathbb{C},\ b\in\mathbb{R}$ (3)

The circle D, with equation |z-2-3i|=2, intersects C at the points representing the complex numbers z_1 and z_2

(b) Find the complex numbers z_1 and z_2

(6)

(a) know from Core Pure Yr I that if a loci of points is given in the form 12-a1=b

then it represents a circle, centre 'a' and radius 'b'

· therefore first finding the centre of this circle by finding the midpoint of the two end points of the diameter of C i.e A and B 4 same as finding the average of 'x' and 'y' coordinates

$$M\left(\frac{-3+5}{2}, \frac{2+-4}{2}\right) : M(1,-1)$$

and using fact that coordinates (a,b) are used to represent the complex number at bi

·next finding radius - know centre of circle, so finding distance from centre to any of A or B - using $d = \sqrt{(x_2 - x_1)^2 + (y_1 - y_1)^2}$

...with A:

with A:

$$d = \int (-3-1)^2 + (2--1)^2$$

$$= \int 16 + 9 = \int 25 = 5$$

$$= \int (4)^2 + (-3)^2$$

$$= \int 16 + 9 = \int 25 = 5$$

$$=) b = 5$$

subbing these into general loci equation

$$=)\left|\frac{1}{2}-\left(\frac{1-i}{2}\right)\right|=\frac{5}{2}$$

$$=)$$
 $2 - 1 + i = 5$

Question 2 continued

(b) question is basically asking us to find p.o. i between two circles the best way to do this is to solve the cartesian equations simultaneously

4 know centre of C as
$$(1,-1)$$
 and rad. = 5

$$\therefore using Cartesian equation of a circle: $(x-x_i)^2 + (y-y_i)^2 = r^2$

$$C: (x-1)^2 + (y-1)^2 = 25 - 0$$$$

now for D-rewrite its general loci equation form such that can read its centre and radius straight from it:

subbing this into the Cartesian equation of a circle

$$D: (x-2)^2 + (y-3)^2 = 2^2$$
=)
$$D: (x-2)^2 + (y-3)^2 = 4 - 0$$

need to solve o and o simultaneously .. expanding both equations

...for C:

$$x^2-2x+1+y^2+2y+1=25$$

=) $x^2+y^2-2x+2y=23-0$
...for D:
 $x^2-4x+4+y^2-6y+9=4$
 $x^2+y^2-4x-6y=-9-2$

solving 0 and 0 simultaneously

from 3 can either make 'x' the subject and sub into 10 or 20 or make 'y' the subject and sub into 10 or 12

WAY 1: make 'x' the subject	NAY 2: make 'y' the subject
2x = 32 - 8y	8y = 32 - 2x
÷2 ÷2	÷q ÷g
x = 16-44	$y = \frac{8}{32 - 2}x = 16 - x$
sub into any of o or o, eq. o	8, 4
(16-44)2+42-2(16-44)+24=23	sub into any of o or @ eg. o
expand brackets	$x^{2} + \left(\frac{16-x}{4}\right)^{2} - 2x + 2\left(\frac{16-x}{4}\right) = 23$
256-128y+16y2+y2-32+8y+2y=23	expand brackets
collect like terms	•

Question 2 continued 1742-1184+201=0	$x^2 + (\frac{16-x}{16})^2 - 2x + \frac{16-x}{2} = 23$
calc equation solver	×16 ×16
$y = \frac{67}{17}, 3$	6x2+(16-x)2-32x+8(16-x)=368 expand brackets 6x2+256-32x+x2-32x+128-8x=3
sub into 3 to get 'x'	collect like terms
-uhen $y = \frac{67}{17}$	17x2-72x+16=0
$x = 16 - 4\left(\frac{67}{17}\right)$	=) x = 4 or 4
$=\frac{4}{17}$ =) $\left(\frac{4}{17},\frac{67}{17}\right)$	-uhen x = 4/7, sub into 3 for 'y':
-uhen y = 3, x = 16 - 4(3)	$y = 16 - \frac{4}{17} = \frac{67}{17}$
= 16-12 = 4	$=) \left(\frac{4}{17}, \frac{67}{17}\right)$
=) (4,3) using fact that (a,b) represents	-uhen x=4,
complex number atbi	$y = \frac{16 - \frac{4}{4}}{4} = \frac{12}{4} = 3$
$=) \ Z_1 = \frac{4}{12} + \frac{67}{12} i$	=) (4,3)
-/ ZI = 17 T7	using fact that (a,b) represent
Z ₂ = 4+3i	complex numbers a+bi
	$=$ $\frac{4}{2}$ $+$ $\frac{67}{12}$ $+$ $\frac{67}{12}$ $+$ $\frac{67}{12}$ $+$ $\frac{67}{12}$ $+$ $\frac{67}{12}$ $+$ $\frac{67}{12}$

4 + 3i

22 =

Question 2 continued
Question 2 continued
cosxsiny
int ^c
sin(x + V) II
$x = -b + \sqrt{b^2 - 4ac}$
(Total for Question 2 is 9 marks)
(2000 Tot Question 2 to 5 marks)

Year 2 Modelling with differential equations - solving second order non-homogenous differential equations and evaluating them

3. A scientist is investigating the concentration of antibodies in the bloodstream of a patient following a vaccination.

The concentration of antibodies, x, measured in micrograms (μ g) per millilitre (ml) of blood, is modelled by the differential equation

$$100\frac{d^2x}{dt^2} + 60\frac{dx}{dt} + 13x = 26$$

where t is the number of weeks since the vaccination was given.

(a) Find a general solution of the differential equation.

(4)

Initially,

- there are no antibodies in the bloodstream of the patient
- the concentration of antibodies is estimated to be increasing at 10 μg/ml per week
- (b) Find, according to the model, the maximum concentration of antibodies in the bloodstream of the patient after the vaccination.

(8)

A second dose of the vaccine has to be given to try to ensure that it is fully effective. It is only safe to give the second dose if the concentration of antibodies in the bloodstream of the patient is less than $5 \mu g/ml$.

(c) Determine whether, according to the model, it is safe to give the second dose of the vaccine to the patient exactly 10 weeks after the first dose.

(2)

(a) noticing this is a non-homogenous 200E

calc equation solver or quadratic formula

$$m = -60 \pm \sqrt{(60)^2 - 4(100)(13)}$$

$$= -\frac{60 \pm \sqrt{-1600}}{200} = -\frac{\frac{-3}{60} \pm \frac{1}{40}i}{200}i = -\frac{3 \pm 2}{10}i = -0.3 \pm 0.2i$$

notice the solutions to the A.E are in the form atbi .. substituting into corresponding c.f formula: $x = e^{at} (A\cos\beta t + B\sin\beta t)$

=) C.F:
$$\chi = e^{-0.3t} (A\cos 0.2t + B\sin 0.2t)$$

now for P.I looking at table

$$\int_{\frac{dx}{dt}}^{dt} = 0$$

Form of I(x)	Form of particular integral
k	λ
ax + b	$\lambda + \mu x$
$ax^2 + bx + c$	$\lambda + \mu x + \nu x^2$
ke ^{px}	λe^{px}
m cos ωx 💃	$\lambda \cos \omega x + \mu \sin \omega x$
$m \sin \omega x$	$\lambda \cos \omega x + \mu \sin \omega x$
$m\cos\omega x + n\sin\omega x$	$\lambda \cos \omega x + \mu \sin \omega x$

В

```
Question 3 continued \frac{d^2x}{dt^2} = 0
```

subbing into 200E

$$100(0) + 60(0) + 13\lambda = 26$$

=)
$$13\lambda = 26$$

and following rule that G.S=C.F+P.I

6.5:
$$x = e^{-0.3t} (A\cos 0.2t + B\sin 0.2t) + 2$$

(b) considering 'initial conditions':

$$0 = e^{-0.3(0)} (A \cos(0.2 \times 0) + B \sin(0.2 \times 0)) + 2$$

at
$$t=0$$
, $\frac{dx}{dt}=10$

$$\frac{dx}{dt} = -0.3e^{-0.3t} \left(-2\cos 0.2t + B\sin 0.2t \right) + e^{-0.3t} \left(-0.2(-2)\sin 0.2t + 0.2B\cos 0.2t \right)$$

sub in initial condition

$$|0| = -0.3e^{-0.3(0)} \left(-2\cos(0.2\times0) + B\sin(0.2\times0) \right) + e^{-0.3(0)} \left(0.4\sin(0.2\times0) \right)$$

+0.2 Bcos (0.2 × 0

$$10 = -0.3(-2) + 0.28$$

$$10 = 0.6 + 0.2 B$$

$$=) 0.28 = 9.4$$

subbing into G.S:

P. I
$$x = e^{-0.3t} \left(-\frac{2}{3} \cos 0.2t + \frac{47}{3} \sin 0.2t \right) + 2$$

now using from Pure Yr I that max concentration occurs where dx =0


```
Question 3 continued
```

now differentiate P.I using product rule and equate to 0

$$\frac{dx}{dt} = -0.3e^{-0.3t} \left(-2\cos 0.2t + 47\sin 0.2t \right) + e^{-0.3t} \left(0.4\sin 0.2t + 9.4\cos 0.2t \right) = 0$$

solving above for the 't' at which the max. concentration occurs-factorise e-0.3t out

$$e^{-0.3t} \left[\cos(0.2t)(0.6+9.4) + \sin(0.2t)(-14.1+0.4) \right] = 0$$

=)
$$e^{-0.3t}$$
 [10 cos 0.2t - 13.7 sin 0.2t] = 0

making each bracket equal O

.. left with 10cos 0.2t-13.7 sin 0.2t = 0

due to exponential graph properties

=) 10cos0.2t = 13.7sin0.2t

.. reject

÷ cos 0.2t

 $10 = 13.7 \sin 0.2t$

cos0.2t

=113.7tan0.2t=10

÷13.7

+13.7

=) $tan 0.2t = \frac{10}{13.3}$

=) $0.2t = \tan^{-1}\left(\frac{10}{13.7}\right)$

= 0.630.

÷0.2

=) t= 3.152....weeks

subbing this 't' into G.S

x = e-0.3(3.152...) (47 sin(0.2 × 3.152...) - 2 cos(0.2 × 3.152...) +2

=) xmax = 12.1 mg/ml

(c) need to see if the concentration of antibodies at t=10 is Lor) 5

$$x = e^{-0.3(10)} \left(-2\cos(0.2 \times 10) + 47\sin(0.2 \times 10)\right) + 2$$

$$=e^{-3}(-2\cos(2)+47\sin 2)+2$$

estion 3 continued	
=) it would be safe to give second dose	
· · · · · · //	
al + cosxsiny	
into	
$\sin(x+y)y$	
7	1-0-
$\begin{array}{c} x \\ x \\ \end{array}$	π%,
The state of the s	
IV Mothod (
	7104
(Total for C	Question 3 is 14 marks)

4. (a) Use de Moivre's theorem to prove that

$$\sin 7\theta = 7\sin\theta - 56\sin^3\theta + 112\sin^5\theta - 64\sin^7\theta$$

(5)

(b) Hence find the distinct roots of the equation

$$1 + 7x - 56x^3 + 112x^5 - 64x^7 = 0$$

(5)

giving your answer to 3 decimal places where appropriate.

(a) question is asking us to convert multi-angle trig expression to high trig powers .. following usual steps:

step 1: rewrite LHS of the equation as a power to then evaluate it using DMT on the RHS

 $(\cos\theta + i\sin\theta)^{\frac{3}{2}} = \cos\theta + i\sin\theta$

step 2: evaluate the Binomial expansion on the LHS

$$(\cos\theta)^{7} + {7 \choose 1}(\cos\theta)^{6}(\sin\theta)^{1} + {7 \choose 2}(\cos\theta)^{5}(\sin\theta)^{2} + {7 \choose 3}(\cos\theta)^{4}(\sin\theta)^{3}$$

$$+\left(\frac{7}{4}\right)(\cos\theta)^{3}(\sin\theta)^{4}+\left(\frac{7}{5}\right)(\cos\theta)^{2}(\sin\theta)^{5}+\left(\frac{7}{6}\right)(\cos\theta)(\sin\theta)^{6}+(\sin\theta)^{7}$$

evaluate choose function on calc and simplify i

 $= (\cos^3\theta + 7i\cos^6\theta\sin\theta - 2|\cos^5\theta\sin^2\theta - 35i\cos^4\theta\sin^3\theta + 35\cos^3\theta\sin^4\theta$ +21icos20 sinst -7costsin60 -isin70

but the question only asks for the sin 70 . Kompare imaginary parts

 $\sin 7\theta = 7\cos^6\theta \sin\theta - 35\cos^4\theta \sin^3\theta + 2|\cos^2\theta \sin^5\theta - \sin^7\theta$

and need RMS in terms of powers of sin : replace all cos with main

Pythagorean identity rearranged: cos20=1-sin20

$$= 7(1-\sin^2\theta)^3 \sin\theta - 35(1-\sin^2\theta)^2 \sin^3\theta + 21(1-\sin^2\theta) \sin^5\theta$$

$$-\sin^2\theta$$

have to expand brackets

Question 4 continued

$$=7\sin\theta-21\sin^3\theta+21\sin^5\theta-7\sin^7\theta-35\sin^3\theta+70\sin^5\theta-35\sin^7\theta$$

$$+2|\sin^5\theta-2|\sin^7\theta-\sin^7\theta$$

collect like powers

$$\frac{1}{2} \sin^{3}\theta = 3\sin\theta - 36\sin^{3}\theta + 112\sin^{5}\theta - 64\sin^{3}\theta$$

(b) notice how the equation in (b) is formed by making the substitution: x=sin0 into equation for sin70 and adding 1 onto the LHS

$$\frac{\sin 70 + 1}{\cos 70} = \frac{1}{2} \times \frac{3}{2} + \frac{112x^5 - 64x^7}{64x^7} = 0$$

need to Solve $\frac{1}{2} \times \frac{1}{2} = 0$

WAY 1: evaluate in degrees (in green indicated use of sin angle law)

$$7\theta = -90^{\circ}, 180^{\circ} - (-90^{\circ}) = 270^{\circ}$$

=)
$$7\theta = -450^{\circ}, -90^{\circ}, 270^{\circ}, 630^{\circ} + \frac{1}{7}$$

 $\theta = -450^{\circ} - 90^{\circ}, 270^{\circ}, 630^{\circ}$
 $7^{\circ}, 7^{\circ}, 7^{\circ}, 7^{\circ}, 7^{\circ}$

Subbing x=sin0 backin

$$x = \sin\theta = \sin\left(-\frac{450^{\circ}}{7}\right), \sin\left(-\frac{90^{\circ}}{7}\right), \sin\left(\frac{270^{\circ}}{7}\right), \sin\left(\frac{630^{\circ}}{7}\right)$$

$$= -0.90096..., -0.22252..., 0.6234...$$

$$\therefore -0.901, -0.223, 0.623, 1 (3 d.p)$$

WAY 2: radians

$$7\theta = -\pi/2, (\pi - -\pi/2) = 3\pi/2$$

$$(-2\pi)$$

$$-\frac{5\pi}{2}, (\pi - (-\frac{5\pi}{2})) = \frac{7\pi}{2}$$

$$=)7\theta = -\frac{5\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{2}$$

$$\theta = -\frac{5\pi}{14}, \frac{\pi}{14}, \frac{3\pi}{14}, \frac{7\pi}{14}$$

Question 4 continued

$$x = \sin \left(-\frac{5n}{14}\right), \sin \left(-\frac{n}{14}\right), \sin \left(\frac{3n}{14}\right), \sin \left(\frac{7n}{14}\right)$$

$$= -0.901, -0.223, 0.623, 1 (3 d.p)$$

Question 4 continued
Question 4 continued
+ cosxsin _V
sin(x+V)
3 6 6 6 6
$x = \frac{-b + \sqrt{b^2 + 4ac}}{2a}$
My Mothe Claur
TWING HE BUILDING
(Total for Orestian A is 10 marler)
(Total for Question 4 is 10 marks)

5. (a)
$$y = \tan^{-1} x$$

Assuming the derivative of tan x, prove that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1+x^2}$$

(3)

$$f(x) = x \tan^{-1} 4x$$

$$\int f(x) dx = Ax^2 \tan^{-1} 4x + Bx + C \tan^{-1} 4x + k$$

where k is an arbitrary constant and A, B and C are constants to be determined.

(5)

(c) Hence find, in exact form, the mean value of f(x) over the interval $0, \frac{\sqrt{3}}{4}$

(2)

(a)
$$y = tan^{-1}(x)$$

taking tan of both sides

differentiate implicitly - assuming

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

and rearrange for dy

$$\frac{dy}{dx} = \frac{1}{-2} = \frac{1}{2} = \frac$$

but need expression in terms of 'x'-

$$=) \frac{dy}{dx} = \frac{1}{1+\tan^2 y} = \frac{1}{1+x^2}$$

(b) see straight away that we're asked to integrate the product of a linear 'x' term and an inverse trig function—hints at need for 1.6.P

... using pneumonic for what should be the "":

Logs **Question 5 continued** u=tan-1(4x) Inverse trig functions (v) differentiate-using chain rule Algebraic expressions on result in part (a) Trig Exponentials

and using IBP : [uv dx = uv - [u'v dx

=)
$$\int x \tan^{-1}(4x) dx = \frac{x^2}{2} \tan^{-1}(4x) - \int \frac{4}{1+16x^2} (\frac{x^2}{2}) dx$$

factorise 1/2 out

$$\int x \tan^{-1}(4x) dx = \frac{x^2}{2} \tan^{-1}(4x) - \frac{1}{2} \int \frac{4x^2}{1+16x^2} dx$$

consider

4 from the ways to integrate a fractional expression:

Fractional expressions

(explained more in detail

4a. Can I split the numerator?

on pg.21 - end of question

Is there a single term in the denominator?

4b. Can I do partial fractions?

Does the denominator factorise?

4c. Can I do algebraic division? Is the fraction improper?

METHOD 1: could manipulate the inside of the integral to then split the

numerator - 2 separate fractions

$$= -\frac{1}{8} \int \frac{16x^2 + 1 - 1}{16x^2 + 1} dx = -\frac{1}{8} \int \left(1 - \frac{1}{16x^2 + 1}\right) dx$$

split integral cosh x cosh x sinh x tanh x lneosh x

 $\arcsin\left(\frac{x}{a}\right) \quad (|x| < a)$

tooking at formula booklet to see which standard result to use

 $\frac{1}{a} \arctan \left(\frac{x}{a} \right)$

 $\operatorname{arcosh}\left(\frac{x}{a}\right), \quad \ln\{x + \sqrt{x^2 - a^2}\} \quad (x > a)$

arsinh $\left(\frac{x}{a}\right)$, $\ln\{x + \sqrt{x^2 + a^2}\}$

 $\frac{1}{2a}\ln\left|\frac{a+x}{a-x}\right| = \frac{1}{a}\operatorname{artanh}\left(\frac{x}{a}\right) \quad (|x| < a)$

 $\frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right|$

P 6 2 6 7

$$= \frac{1}{8} \times \frac{1}{16} \int \frac{1}{x^2 + 1/16} dx$$

$$= \frac{1}{128} \left[\frac{1}{1/4} \arctan \left(\frac{x}{1/4} \right) \right] + k$$

$$= \frac{1}{128} \left[4 \arctan (4x) \right] + k$$

$$= \frac{1}{32} \arctan (4x) + k$$

and finally subbing all into I.B.P

$$\int x \tan^{-1}(4x) dx = \frac{x^2 \tan^{-1}(4x) - \frac{1}{8}x + \frac{1}{32} \arctan(4x) + K}$$

$$= A = \frac{1}{2}, B = \frac{-1}{8}, C = \frac{1}{32}$$

HAY 2: integration by substitution

consider
$$\int \frac{4x^2}{1+16x^2} dx$$

let tanu=4x

=) u=tan=1(4x)

=) x = tanu

$$\frac{du}{dx} = using chain rule on inverse trig result for (6)

=) $\frac{dx}{du} = \frac{1+16x^2}{4}$

=) $\frac{dx}{du} = \frac{1+16x^2}{4}$

=) $\frac{dx}{du} = \frac{1+16x^2}{4}$$$

sub into integral

$$\int \frac{4x^2}{1+16x^2} \left(\frac{1+16x^2}{4} \right) dq$$

$$= \int x^2 dq$$

$$= \int \left(\frac{\tan q}{4} \right)^2 dq$$

$$= \frac{1}{16} \int \tan^2 q dq$$

from Pure Yr 1- don't know standard result

for Stanudu : using identity: tan24 = sec24-1

= \frac{1}{16} \int \sec2u-1 \, \dagger

integrate using seczudu = tanu+c

Question 5 continued
$$= \frac{1}{16} \left[\tan u - u \right] + C$$

$$= \frac{1}{16} \left[\tan \left(\tan^{-1} \left(4x \right) \right) - \tan^{-1} \left(4x \right) \right] + C$$

$$= \frac{1}{16} \left(4x - \tan^{-1} \left(4x \right) \right) + k$$

$$= x \operatorname{pand} \frac{1}{16} \operatorname{in}$$

$$= \frac{1}{16} x - \frac{1}{16} \tan^{-1} \left(4x \right) + k$$

· Subbing into 1.B.P

$$\frac{Ans = \frac{1}{2}x^{2}tan^{-1}(4x) - \frac{1}{2}(\frac{1}{4}x - \frac{1}{16}tan^{-1}(4x)) + k}{= \frac{1}{2}x^{2}tan^{-1}(4x) - \frac{1}{8}x + \frac{1}{3}tan^{-1}(4x) + k}$$

(c) subbing into formula for mean value of a function

$$f(x) = \frac{1}{b-a} \int_a^b f(x) dx$$

$$= \frac{1}{\sqrt{3}} - 0 \int_{0}^{\sqrt{3}/4} x \tan^{-1}(4x) dx$$

know indefinite integration from (b)evaluate at LIMITS

$$= \frac{1}{\sqrt{3}/4} \left[\frac{1}{2} x^2 \tan^{-1}(4x) - \frac{1}{8} x + \frac{1}{32} \tan^{-1}(4x) \right]_0^{\sqrt{3}/4}$$

$$= \frac{4}{53} \left\{ \left(\frac{1}{2} \left(\frac{53}{4} \right)^2 + an^{-1} \left(53 \right) - \frac{1}{8} \left(\frac{53}{4} \right) + \frac{1}{32} + an^{-1} \left(53 \right) \right] - \left[0 + 0 + 0 \right] \right\}$$

$$= \frac{4}{\sqrt{3}} \left\{ \frac{3}{32} \left(\frac{n}{\sqrt{3}} \right) - \frac{\sqrt{3}}{32} + \frac{n}{96} \right\}$$

$$= \frac{4}{\sqrt{3}} \left(\frac{\pi}{32} - \frac{\sqrt{3}}{32} + \frac{\pi}{96} \right)$$

collect rs

$$= \frac{4}{53} \left(\frac{\pi}{24} - \frac{53}{32} \right) = \frac{53}{3} \left(\frac{\pi}{6} - \frac{53}{8} \right)$$

rationalise coefficient

Question 5 continued

expand

$$=\frac{\sqrt{3}\pi}{\sqrt{18}} = \frac{3}{24}$$

or get common denominator

$$=\frac{\sqrt{3}}{72}(4n-3\sqrt{3})$$

Reminders:

Students find fractions tough as fractions can be so many types.

Check first (and throughout the question) if you can simplify by: (and throughout the question) if you can simplify by: using basic indices rules to simplify and expand $\frac{b}{b}$ to $x^a \times x^b = x^{a+b}$ o $\frac{x^a}{x^b} = x^{a-b}$ o $\frac{x^a}{5x} means \frac{3}{5}x^{-1}$.
o $(\sqrt[3]{x})^a$ or $\sqrt[3]{x^a} = x^{\frac{a}{b}}$

$$x^a \times x^b = x^{a+b}$$

$$\sqrt{\frac{x^b}{3}}$$
 means $\frac{3}{2}x^{-1}$.

$$\circ \quad (\sqrt[b]{x})^a \text{ or } \sqrt[b]{x^a} = x^{\frac{1}{b}}$$

- Factorising and maybe cancel first
- Is there a single term in denominator? split fractions using $\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$ or $(a+b)c^{-1}$

Then ask yourself:

- 1. Is it an easy power type? $\int x^n dx = \frac{x^{n+1}}{n+1}$
- Is it ln (natural logarithm)? Form $\int \frac{f'(x)}{f(x)} dx$ To recognize these, the power in the denominator is (almost always) 1. When you bring the denominator up to the numerator using negative power indices rule you get a power of-1. By adding one to the power and dividing it, you'll end up dividing by zero which you can't do

$$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + C$$

Method: copy In(denominator). Remember ignore then tiate to check you get what is inside the integral correct with numbers only, not variables and only correct by multiplying or dividing. We can ignore the pink part since the derivative 'pops' out when we differentiate and we know when we differentiate our answer it must be what is inside the integral).

- is it bring up and harder power type? Bring the power up and becomes the form $\int f'(x)f(x)^n dx = \frac{f(x)^{n+1}}{n+1} + C$ Recognisable by a power in the denominator other than
 - $\int \frac{4x}{(2x^2-1)^3} = \int 4x(2x^2-10)^{-3} dx \text{ etc}$

Is it Partial fractions! Recognisable by products in the denominator.

Form
$$1\frac{...}{(cx+d)(ex+f)} = \frac{A}{cx+d} + \frac{B}{ex+f}$$
Form $2\frac{...}{(dx+e)(fx+p)^2} = \frac{A}{dx+e} + \frac{B}{x+g} + \frac{C}{(fx+g)^2}$

Form 3
$$\frac{(dx+e)(fx+g)^2}{(dx+e)(fx+g)^2} = \frac{dx+e}{dx+e} + \frac{fx+g}{fx+g} + \frac{(fx+g)^2}{(fx+g)^2}$$
Form 3 $\frac{...}{(dx+e)(fx^2+g)} = \frac{A}{dx+e} + \frac{Bx+C}{fx^2+g}$

- Is it divide first? Recognisable by two or more terms in the denominator and also where we have the matching highest powers in both numerator and denominator or a higher
- Rewriting/adapting fraction in a clever way (split up the numerator to get two fractions)
- Is it inverse trig? (may need to complete the square first) Either use the inverse trig results below or use a trig

$$\int \frac{1}{\sqrt{a^2-(bx)^2}} \, dx \ = \ \frac{1}{b} \sin^{-1}\left(\frac{bx}{a}\right) + C$$

$$\int -\frac{1}{\sqrt{a^2-(bx)^2}} dx = \frac{1}{b} \cos^{-1}\left(\frac{bx}{a}\right) + C$$

$$\int \frac{1}{a^2 + (bx)^2} dx = \frac{1}{ab} \tan^{-1} \left(\frac{bx}{a} \right) + C$$

(Total for Question 5 is 10 marks)

6.

$$\mathbf{M} = \begin{pmatrix} k & 5 & 7 \\ 1 & 1 & 1 \\ 2 & 1 & -1 \end{pmatrix} \quad \text{where } k \text{ is a constant}$$

(a) Given that $k \neq 4$, find, in terms of k, the inverse of the matrix M.

(4)

(b) Find, in terms of p, the coordinates of the point where the following planes intersect.

$$2x + 5y + 7z = 1 x + y + z = p 2x + y - z = 2$$
(3)

(c) (i) Find the value of q for which the following planes intersect in a straight line.

$$4x + 5y + 7z = 1$$
$$x + y + z = q$$
$$2x + y - z = 2$$

(ii) For this value of q, determine a vector equation for the line of intersection.

(7)

(a) remembering the steps to finding the inverse of a matrix step 1: find det(M)

$$= k \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} - 5 \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} + 7 \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$$

$$= k (-1-1) - 5 (-1-2) + 7 (1-2)$$

$$= k (-2) - 5 (-3) + 7 (-1)$$

expand brackets

$$=-2k+8$$
 or $8-2k$

step 2: find matrix of minors i.e each element replaced by the det. of the 2x2 matrix left after all elements in the rows and columns corresponding to that chosen element are deleted

$$\frac{M_{\text{minors}}}{s-7} = \begin{pmatrix} -2 & -3 & -1 \\ -5-7 & -k-14 & k-10 \\ s-7 & k-7 & k-5 \end{pmatrix} = \begin{pmatrix} -2 & -3 & -1 \\ -12 & -k-14 & k-10 \\ -2 & k-7 & k-5 \end{pmatrix}$$

step 3: matrix of cofactors i.e change the sign of elements with '-ve'

Question 6 continued

step 4: need Cti.e keep main diagonal and suap positions of highlighted

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \quad c^{T} = \begin{pmatrix} -2 & 3 & -2 \\ 12 & -k - 14 & 7 - k \\ -1 & 10 - k & k - 5 \end{pmatrix}$$

Step 5:
$$M^{-1} = \frac{1}{det(M)} C^{T}$$

$$=) M^{-1} = \frac{1}{8-2k} \begin{pmatrix} -2 & 3 & -2 \\ -12 & -k-14 & 7-k \\ -1 & 10-k & k-5 \end{pmatrix}$$

(b) WAY 1: using matrices

notice we're given a system of linear equations-hence need to find the p.o.i i.e solve for (x) - using general formula for matrix equations:

Mx = y - splitting into matrix of coefficients, variables and constants

$$\begin{pmatrix} 2 & 5 & 7 \\ 1 & 1 & 1 \\ 2 & 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ \rho \\ z \end{pmatrix}$$

and solve for (:multiply LHS of each side of the equation by MT

$$=) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 & 5 & 7 \\ 1 & 1 & 1 \\ 2 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ \rho \\ 2 \end{pmatrix}$$

and seeing how, comparing above inverse matrix to that in part (a),

k=2 - subbing into Ans

$$M^{-1} = \frac{1}{4} \begin{pmatrix} -2 & 12 & -2 \\ 3 & -2 - 14 & 7 - 2 \end{pmatrix}$$

$$= \begin{pmatrix} \chi \\ y \\ z \end{pmatrix} = \frac{1}{4} \begin{pmatrix} -2 & 12 & -2 \\ 3 & -16 & 5 \\ -1 & 8 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ \rho \\ 2 \end{pmatrix}$$

RHS matrix multiplication - "rows into columns"

Question 6 continued =)
$$x = 3p - \frac{3}{2}$$

 $y = \frac{13}{4} - 4p$
 $z = 2p - \frac{7}{4}$

WAY 2: algebraically - solving 3 variable simultaneous equations for

$$2x + 5y + 7z = | -0$$

$$x + y + z = p -0$$

$$2x + y - z = 2 -0$$

eg. elim. 'x' from 0 and 0 elim 'x' from 2 and 3

elim 'y' from @ and s

$$3 \times 9 - 9 = 3y + 9 \ge 6p - 6$$

 $3y + 5 \ge 6p - 6$

$$\frac{2}{2} = 2\rho - \frac{7}{4}$$

sub this into any of (or (eg. into (

$$y + 3\left(2\rho - \frac{2}{4}\right) = 2\rho - 2$$
expand

$$y + 6p - \frac{21}{4} = 2p - 2$$

$$=)$$
 $y = -4p + \frac{13}{4}$

sub this into any of 0,0 or 3 eq. 0

$$x + \frac{13}{4} - 4\rho + 2\rho - \frac{7}{4} = \rho$$

=)
$$x = 3\rho - 6/4$$

 $x = 3\rho - 3/2$

(c)(i) METHOD 1: checking consistency

recognising that for the planes to intersect in a straight line - def(A)=0

and the system of linear equations must have infinitely many solutions meaning they must be consistent with each other

.. if we elim. one of the x, y, z variables to form three equations these would have to be consistent with one another

$$4x+5y+72=1-0$$

 $x+y+2=9-2$
 $2x+y-2=2-3$

WAY 1: elim.
$$2$$

7×2-0 7x+7y+7z=7q

-4x+5y+7z=1

3x+2y=7q-1-9

2+3, x+y+z=q

2x+y-z=2

3x+2y=q+2-5

we know the resulting 2 equations have to be consistent i.e their RHS has to be equal

=)
$$7q-1=q+2$$

=) $6q=3$
 $\div 6$ $\div 6$
 $q=\frac{1}{2}$

$$2 \times (9 - 3)$$

$$2 \times +2 y +2 = 2q$$

$$2 \times + y - 2 = 2$$

$$y + 3 = 2q - 2 - 6$$

we know that the resulting 2 equations have to be Consistent i.e RHS has to be equal

$$1-4q = 2q-2$$

=) 6q = 3
÷6 ÷6
=) $q = \frac{1}{2}$

$$5\times 0 - 0$$
 $5x + 5y + 5z = 5q$
 $4x + 5y + 7z = 1$
 $x - 2z = 5q - 1 - 0$

we know that the resulting 2 equations have to be consistent i.e RHS has to be equal

$$|-4q = 2q - 2$$

=) $6q = 3$
 $\frac{.6}{-1}q = \frac{..6}{2}$

METHOD 2: finding p.O.i of the planes

first trying to solve o and o simultaneously (doesn't involve 'a') eg. let z=0

$$4x + 5y = 1 - 0$$

 $2x + y = 2 - 0$

elim. x

y=-1 -subbing into any of ○ or ③ to get 'x' eg. ○

$$4x+5(-1)=1$$
expand brackets
 $4x=6$
=) $x=6/4=1.5$

-subbing into any of
$$^{\circ}$$
 or $^{\circ}$ to get 'x' eg. $^{\circ}$

because 'intersect in a straight line means all equations are consistent (at least one set of (x,y,z) that satisfies all equations simultaneously) subbing this into 0 to get 'q' 1.5 + (-1) + 0 = 0 $=19 = 0.5 = \frac{1}{2}$

(ii) METHOD 1: finding the different coordinates that lie on the line of intersection and finding the vector equation through them

eg. ctd. from part (c)(i) WAY I, have
$$3x+2y=7q-1-\Psi$$

$$3x+2y=q+2-\Psi$$

$$5x+2y=2.5-\Psi$$

$$4x+2y=2.5-\Psi$$

$$5x+2y=2.5-\Psi$$

$$5x+2y=2.5-\Psi$$

$$6x+2y=2.5-\Psi$$

$$6x+$$

= 3x = 2.5

$$x = \frac{5}{6}$$

sub into any of 0,0,0 eg. 3

$$=) \frac{5}{3} - 7 = 2$$

now given the 2 coordinates, can work out the vector parametric

equation through them - in the form at
$$\lambda b$$

need 'b' = $\overrightarrow{AB} = \begin{pmatrix} 5/6 \\ -1/3 \end{pmatrix} - \begin{pmatrix} 5/4 \\ -3/4 \end{pmatrix}$
= $\begin{pmatrix} 5/6 \\ -5/4 \\ 5/12 \end{pmatrix}$

$$r = \begin{pmatrix} 0 \\ 5/4 \\ -3/4 \end{pmatrix} + \lambda \begin{pmatrix} 5/6 \\ -5/4 \\ 5/12 \end{pmatrix}$$

$$\underbrace{\Gamma = \begin{pmatrix} 5/6 \\ 0 \\ -1/3 \end{pmatrix} + \lambda \begin{pmatrix} 5/6 \\ -5/4 \\ 5/12 \end{pmatrix}}$$

NOTE: can do the same (i.e make x=0, then y=0) for all the @ and os of WAY 2 and WAY 3 to get the two coordinates

METHOD 2: trying to fill in the general Cartesian equation for vector line:

$$\lambda = \frac{x-a}{b} = \frac{y-a}{b} = \frac{z-a}{b}$$

$$3x + 2y = \frac{5}{2}$$
*2
 $6x + 4y = 5$

now we want a similar expression for (2' in terms of 'x' : elim. 'y'

$$eg \cdot 3 - 2x + y - 2 = 2$$

 $x + y + 2 = q$

$$\frac{x-1}{x-2}=2-q$$

$$x-2z=3/2$$

$$2x-4z=3$$

make '2' the subject

$$42 = 2x - 3$$
=) $2 = 2x - 3$

$$=$$
) $z = \frac{2x-3}{4}$

as 'y' and 'z' are expressed in terms of 'x'we can write the vector line parametrically

$$y = \frac{5-6(\lambda)}{4}$$

and rearranging both - now for a

Question 6 continued

$$X = \frac{5-4y}{6} = \frac{4z+3}{2} = \lambda$$
=) $X = -\frac{2}{3}y + \frac{5}{6} = 2z + \frac{3}{2} = \lambda$

realising need single 'x','y' (2' terms (-2/3, -2)

$$\frac{x-0}{1} = \frac{-\frac{2}{3}y+\frac{5}{6}}{-\frac{2}{3}} = \frac{2z+\frac{3}{2}}{2} = \lambda$$

$$=) \frac{x-0}{1} = \frac{y-5/4}{-3/2} = \frac{z+3/4}{1/2} = \lambda$$

=)
$$a = \frac{\text{numerator}}{\text{negated}} = \begin{pmatrix} \frac{5}{4} \\ -\frac{3}{4} \end{pmatrix}$$

$$b = denominator = \begin{pmatrix} -3/2 \\ 1/2 \end{pmatrix}$$

$$r = \begin{pmatrix} 0 \\ 5/4 \\ -3/4 \end{pmatrix} + t \begin{pmatrix} -3/2 \\ 1/2 \end{pmatrix}$$

(Total for Question 6 is 14 marks)

subbing into Cartesian equation

Figure 1

A student wants to make plastic chess pieces using a 3D printer. Figure 1 shows the central vertical cross-section of the student's design for one chess piece. The plastic chess piece is formed by rotating the region bounded by the y-axis, the x-axis, the line with equation x = 1, the curve C, and the curve C, through 360° about the y-axis.

The point A has coordinates (1, 0.5) and the point B has coordinates (0.5, 2.5) where the units are centimetres.

The curve C_1 is modelled by the equation

$$x = \frac{a}{y+b} \qquad 0.5 \leqslant y \leqslant 2.5$$

(a) Determine the value of a and the value of b according to the model.

(2)

The curve C_2 is modelled to be an arc of the circle with centre (0, 3).

(b) Use calculus to determine the volume of plastic required to make the chess piece according to the model.

(9)

(a) recognising that point A lies on (, and point B lies on (, .: subbing these in turn to get 'a' and 'b'

$$\frac{q}{0.5+b}$$
 $0.5 = \frac{q}{2.5+b}$

$$=10.5+b=a$$
 $0.5(2.5+b)=a$

$$1.25 + 0.5b = \alpha$$

= $1.25 - 0.5b = 1.25 - 0$

DO NOT WRITE IN THIS AREA

solving these simultaneously - calc equation solver or elim. 'a' **Question 7 continued**

$$\begin{array}{ccc} 0.5b = 0.75 \\ \div 0.5 & \div 0.5 \end{array}$$

$$a = 0.5 + 1.5$$

(b) key bit is realising that this is a modelling with volumes of revolution question where to determine the volume of the plastic required to make the whole chesspiece would require us to add 3 separate volumes together

Vchess piece V1 + V2 + V3

Figure 1

...first: Vi :

remembering formula for volume of revolution about the y-axis:

$$\pi \int_{\alpha}^{\beta} x^{2} dy$$

$$V_{1} = \pi \int_{0.5}^{2.5} \left(\frac{^{2}}{y + ^{2}} \right)^{2} dy$$

factorise the 4 out

=
$$4\pi \int_{0.5}^{2.5} \frac{1}{(y+1.5)^2} dy$$
 using $= 4\pi \int_{0.5}^{2.5} (y+1.5)^{-2} dy$

$$= 4\pi \left\{ \left[-(2.5 + 1.5)^{-1} \right] - \left[-(0.5 + 1.5)^{-1} \right] \right\}$$

$$= 4\pi \left(-\frac{1}{4} + \frac{1}{2} \right) = 4\pi \left(\frac{1}{4} \right) = \pi \text{ cm}^{3}$$

Question 7 continued

...next: V2-requires us to find the volume of revolution of an arc circle - finding its Cartesian equation - generally

centre:
$$(0,3)$$

radius = eq. $\int (0.5-0)^2 + (2.5-3)^2$

$$= \int (0.5)^2 + (-0.5)^2$$

$$= \int \frac{\sqrt{2}}{2}$$

$$\therefore \times \frac{\sqrt{2}}{2} + (y-3)^2 = \frac{1}{2}$$

and now working out the volume of revolution of the circle's cartesian equation-sub it into $\pi (B \times 2 dy)$

$$= \pi \int_{2.5}^{\infty} (0.5 - (y-3)^2) dy \quad j \quad \alpha = 3 + \frac{\sqrt{2}}{2}$$

integrate

$$= \pi \left[0.5y - \frac{1}{3} (y-3)^3 \right]_{2.5}^{\infty}$$

$$= \pi \left\{ \left[0.5 \times -\frac{1}{3} (x-3)^{3} \right] - \left[\pi \left(0.5 (2.5) - \frac{1}{3} (2.5-3)^{3} \right) \right] \right\}$$

$$= \pi \left(\frac{6 + \sqrt{2}}{4} - \frac{\sqrt{2}}{12} \right) - \pi \left(\frac{31}{24} \right)$$

$$= \pi \left(\frac{9 + \sqrt{2}}{6} \right) - \frac{31}{24} \pi$$

...finally: V^3 - see straight lines; using volume of cylinder = πr^3 h $\pi (1)^2 (0.5)$

$$=\frac{\pi}{2}$$
 cm³

=) TOTAL VOLUME =
$$\pi + \frac{5+4/2}{24}\pi + \frac{\pi}{2}$$
= $\pi / 1 + 5 + 4/2 + 1$

$$= \pi \left(1 + \frac{5 + 4\sqrt{2}}{24} + \frac{1}{2} \right) = \pi \left(\frac{41 + 4\sqrt{2}}{24} \right) \text{ cm}^{3}$$

Question 7 continued	
Question 7 continued $\approx 6.11 \text{ (m}^3 \text{ (3 s.f)}$	
osy + cosxsiny	
sin(x + N) // 3	
3	
Texas Section 1	
My Mothe Clai	

Question 7 continued	
	_
	_
	_
+ cosxsiny	
sin(x + V) is the same of the	_
3,110	
	_
$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$	_
	_
	_
	_
Av Mathe Claur	
Ty Fiaths Otou	
	_
	_
	_
(Total for Question 7 is 11 marks) TOTAL FOR PAPER IS 75 MARKS	=

